Parametrisk analyse

Parametrisk analyse er en multi-run-analyse, der simulerer et kredsløb gentagne gange, imens en parameter fx. en komponentværdi, trinvis forøges. Alle typer analyser kan udføres. Analysen giver en hel skare af kurver.

Alle typer analyser kan udføres som parametriske.

Fx. kan generatoren være parametrisk, en modstand, en kondensator osv.

Og parametrisk analyse kan kombineres med et sweep. Dvs. at man fx sweeper en AC-generator ved Bodeplot-analyse, - eller sweeper en spædingsgenerator.

Først i kompendiet kommer beskrivelse til de "nye versioner af ORCAD ", - efterfulgt af lidt ældre materiale !! Det ses specielt på, at skærmklip af PC-vinduerne ikke ligner de nuværende !!

RC-led med kondensator som parameter:

Her er givet et kredsløb. Der laves et AC-sweep med kondensatoren som parameter. Dvs. der ønskes Bodeplot for forskellige værdier af kondensatoren.

Kondensatorens værdi skal erstattes af en substitution. Værdien erstattes af et navn i krøllede parenteser, her blot brugt CV, for "Capacitor Variabel"

Andre eksempler kunne være: {Cvariabel} eller {CVar}.

De krøllede parenteser skal formodentlig fortælle matematikken at kondensatorens værdi skal komme et andet sted fra.

Et sted på diagrammet placeres en "PARAM" komponent fra biblioteket Special

PARAM / SPECIAL.

PARAM er en substitut for komponentens værdi.

Dobb. Klik på "Parameters" for at åben dets Property-spreadsheet.

Regnearket kan være vist vandret eller lodret! Tryk på knappen "Pivot " for at bytte om !!

New Property Appl	y Display Delete Property		
	A		
	SCHEMATIC1 : PAGE1		
Color	Default		
Designator	Bolduk		
Graphic	PARAM.Normal		
ID	///////////////////////////////////////		
Implementation			
Implementation Path			
Implementation Type	PSpice Model		
Location X-Coordinate	110		
Location Y-Coordinate	260		
Name	INS195		
Part Reference	1		
PCB Footprint			
Power Pins Visible			
Primitive	DEFAULT		
PSpiceOnly	TRUE		
Reference	1		
Source Library	C:\CADENCE\SPB_17.2		
Source Package	PARAM		
Source Part	PARAM.Normal		
Value	PARAM		

I regnearket er der angivet et større antal værdier / navne for forskellige parametre.

Men ikke noget, der henviser til kondensatoren.

Der skal indsættes en ny linje. Klik "New Property"

Udfyld felterne i "Add New Property" vinduet som vist.

Navnet skal være det samme som der er valgt i de krøllede parenteser i diagrammet.

Værdien i "Value" er – formodentlig bare kondensatorens default værdi. ??

Sæt flueben i Display On /Off, for at få vist navn og værdi af PARAM – komponenten på diagrammet!

Display Properties	×
Name: CV	Font Arial 7
Value: 1n Display Format	Change Use Default
O Do Not Display	Color
⊖ Value Only	Default ~
Name and Value	Rotation
O Name Unly	① 0° ① 180°
O Both if Value Exists	○ 90° ○ 270°
○ Value if Value Exists	Text Justification
	Default 🗸
OK	Cancel Help

Add New Property	×		
Name: CV			
Value: 1n			
Display [ON/OFF]			
Enter a name and click Apply or OK to add a column/row to the property editor and optionally the current filter (but not the <current properties> filter).</current 			
No properties will be added to selected objects until you enter a value here or in the newly created cells in the property editor spreadsheet.			
Always show this column/row in this filter			
Apply OK Cancel Help			

Tryk Apply

Vælg nu Name and Value og tryk OK

Der kan nu indsættes flere Properties, men luk bare med Cancel.

Vend tilbage til diagrammet. Nu skulle der gerne være vist følgende: $\frac{PARAMETERS:}{CV = 1n}$

Nu skal der bare opsættes en simuleringsprofil, - og at der skal bruges parameter.

Simulation Settings - 1				
General Analysis	Analysis Type: AC Sweep/Noise	AC Sweep Type Uinear Start Frequ Cogarithmic End Freque	iency: 1 ency: 1meg	Vælg et AC-sweep og indtast start- slutværdier. Og 100 Points/Pecade
Options Data Collection Probe Window	General Settings Monte Carlo/Worst Case Parametric Sweep Temperature (Sweep) Save Bias Point Load Bias Point	Decade Points/Dec Noise Analysis Enabled Output Voltage: I/V Source: Interval: Output File Options Interval: Output File Options Include detailed bias point information for nonlinea semiconductors (.OP)	ade: 100	C

Derefter enables Parametrisk Sweep

Nu gives der mulighed for at	Simulation Settings - 1					
sweepe forskellige Sweep Variable:	General Analysis Configuration Files	Analysis Type: AC Sweep/Noise Options:	Sweep Variable Voltage source Current source	Name: Model type:		Ţ
Fx en spændingskilde.	Options Data Collection Probe Window	General Settings Monte Carlo/Worst Case Parametric Sweep remperature (Sweep)	Global parameter Model parameter Temperature	Model name: Parameter name:		
Men her vælges en Global parameter.		Save Blas Point	Logarithmic Decade		tart Value: ind Value: ncrement:	1n 100n 10n

Parametrene, dvs. de kondensatorværdier, der skal laves AC-sweep for, kan nu vælges på 2 måder.

Enten som en startværdi og slutværdi, og Increment skal forstås som den værdi startværdien oges med før næste beregning udføres.

Eller man kan vælge at indskrive en liste over de komponent-værdier, der skal beregnes for!

Sweep Type			Linear
	Start Value:	1n	
Linear	End Value:	100n	Loganu
OLogarithmic Decade 🗸	Increment:	10n	💿 Value Li
 Value List 			

Linear					
OLogarithmic		Decade	Ψ.		_
Value List	10n	47n 100n 2	220n		-]
				~	

×

Available Sections		Kør simuleringen, og I	Pspice viser nu de mulige
** Profile. "SCHEMATICI-1" [C\Users\vald0159 Step part ** Profile "SCHEMATICI-1" [C\Users\vald0159 Step part *Profile "SCHEMATICI-1" [C\Users\vald0159 Step part ** Profile "SCHEMATICI-1" [C\Users\vald0159 St	ram CV = 1.0000E-09 27.0 Deg ram CV = 11.0000E-09 27.0 Deg ram CV = 21.0000E-09 27.0 Deg ram CV = 31.0000E-09 27.0 Deg ram CV = 41.0000E-09 27.0 Deg	grafer.	
Profile: "SCHEMATICI-1" [C\UserS\valdb15 Step par Profile: "SCHEMATICI-1" [C\UserS\valdb159 Step par Profile: "SCHEMATICI-1" [C\UserS\valdb159 Step par Profile: "SCHEMATICI-1" [C\UserS\valdb159 Step par Profile: "SCHEMATICI-1" [C\UserS\valdb159 Step par	Idin C+ 11 0000E-03 27.0 Deg ram CV = 51.0000E-03 27.0 Deg ram CV = 61.0000E-03 27.0 Deg ram CV = 71.0000E-03 27.0 Deg ram CV = 81.0000E-03 27.0 Deg	Tryk bare OK	
Profile: "SCHEMATICI-I" (Clusers/Vardul 153 Step par	ram CV = 91.0000E-03 27.0 Deg		
All None	OK Cancel		
1.07			
		-50	
1.0Hz 100Hz 100Hz 1.00 □ ◊ ♥ △ ◊ ♦ X Å Y ¥ V(R1:2) Frequ		1.0Hz 10Hz 100Hz 1 ■ ♦ ▼ ▲ DB (V (C1:2))	.OKHz 10KHz 100KHz 1.OMHz

Til venstre ses grafer for "Increment-værdier", til højre " Value List "

Højreklik på den graf, der evt. ønskes at se nærmere på. Vælg Trace Information

Eksempel med ændring af set-værdien af et potentiometer.

Normalt kan man indstille set-værdien ved som sædvanlig at klikke på den. Værdier fra 0 til 1 for at dreje pot-meteret fra den ene yderstilling til den anden. Således vil 0.5 være i midten. Der er adderet en ny Property til PARAMETER-pseudokomponenten.

Samme navn som i krøllede parenteser på diagrammet.

New Property Appl	y Display Delete Property			
1				
	A			
	SCHEMATIC1 : PAGE1			
Color	Default			
Designator				
Graphic	PARAM.Normal			
ID				
Implementation				
Implementation Path				
Implementation Type	PSpice Model			
Location X-Coordinate	e 510			
Location Y-Coordinate	e 360			
Name	INS301			
Part Reference	1			
PCB Footprint				
Power Pins Visible				
Primitive	DEFAULT			
PSpiceOnly	TRUE			
Reference	1			
RVar	0.5			
Source Library	C:\CADENCE\SPB 1.2			
Source Package	PARAM			
Source Part	PARAM.Normal			
Value	PARAM			

Her er sim-opsætningen

Og graferne:

Test følgende kredsløb:

Her følger materiale af ældre dato / til tidligere versioner af ORCAD !!

VDC - sweep

Ved at sweepe en DC-generator, kan et kredsløb fx undersøges ved forskellige forsyningsspændinger.

En DC-generator kan sweepes direkte. Det giver en graf, med den sweepede generatorspænding ud ad X-aksen.

Opsæt simuleringsprofilen som vist:

Vælg en DC-sweep. Angiv navnet på generatoren, fx V1

Indtast en startværdi, fx 0 V, og en slutværdi, fx 2 V. Increment angiver de step, der skal beregnes for!

er 1.01 e.01 4	
Simulation Settings - 1	<u>×</u>
General Analysis Include F	iles Libraries Stimulus Options Data Collection Probe Window
Analusis tune:	- Sween variable
DC Sweep 💌	Voltage source Name: V1
Options:	C Current source Model type:
Primary Sweep	C Model parameter Model name:
Monte Carlo/Worst Case	C Temperature Parameter name:
Parametric Sweep Temperature (Sweep)	Sweep type
Save Bias Point	C Linear Start value: 0
,	C Logarithmic Decade v laws and a
	C Value list
	OK Annuller Anvend Hjælp

X-aksen viser spændingen påtrykt modstand og diode af generatoren V1. Hvis der ønskes, at X-aksen skal angive Udiode, må den ændres.

I PSPICE-vinduet vælges PLOT / X-Axis Settings

Vælg "Axis Variable", og vælg V(Udiode)

Axis Settings			
XAxis YAxis X Grid Y Grid			
Data Range	Use D)ata	
Auto Range	@ Fi	ull	
C User Defined	C B	estricted (analog)	
0V to 2.0V		V to 2	/
Scale	Proce	essing Options	
Linear	E F	ourier	
C Log	□ P	erformance Analys	is
	Axis Variable		
OK Cancel	Save As Default	Reset Defaults	Help

Nu vil resultatet være:

PARAMETRISK ANALYSE

Dette er den rigtige graf for strømmen I i en diode ved forskellige påtrykte spændinger.

Parametrisk Analyse

Sweep en generator:

×

Indtast: Offset = 0, Amplitude = $\{Uvar\}$, Frekv = 1k.

Placer en Param component, Adder new column, Indtast navn og værdi, og gør den visible i diagrammet.

Simulation Settings - 1

×

Kreer en ny simulationsprofil, og sæt den op:

Vælg Time domain.

parametervariablen.

Start value = 0.5, End value = 1.0Increment = 0.1.

Indtast fx

I General Settings, vælg "Run to time" = 3 mS

"Maximum step size" = fx. 3 uS.

Herefter klikkes på Parametric Sweep

Vælg "Global parameter, og indtast navnet på

General Analysis Include F	iles Libraries Stimulus Options Data Collection Probe Window
Analysis type: Time Domain (Transient) Options: General Settings Monte Carlo/Worst Case Parametric Sweep Temperature (Sweep) Save Bias Point Load Bias Point	Bun to time: 3m seconds (TSTOP) Start saving data after: 0 seconds Iransient options:
Simulation Settings - 1 General Analysis Include Fil Analysis type:	es Libraries Stimulus Options Data Collection Probe Window
Time Domain (Transient) Options: General Settings Monte Carlo/Worst Case Parametric Sweep Temperature (Sweep)	© Voltage source Name: © Current source Model type: © Global parameter Model name: © Model parameter Model name: © Iemperature Parameter name:
☐ Save Bias Point ☐ Load Bias Point	Sweep type Start value: 0.5 Incerement: Incerement: Incerement:
	OK Annuller <u>A</u> nvend Hjælp

The graphs should look as the following:

Graferne viser spændingen over dioden når der påtrykkes forskellige spændinger.

×

AC-sweep og ændring af en modstand:

/ Valle Thorø

10Hz

30Hz

-20

-30

-40

-50

-60

300Hz

1.0KHz

3.0KHz

Frequency

10KHz

30KHz

100KHz

300KHz

100Hz

× × VDB(UC)

1.0MHz

Variabel liste:

Her er samme simulering udført, men modstandsværdierne er valgt fra en liste:

(Værdierne er adskilt af space eller komma.)

Analysis type: AC Sweep/Noise Dptions: General Settings Monte Carlo/Worst Case Parametric Sweep Temperature (Sweep) Save Bias Point Load Bias Point	Sweep variable Name: Voltage source Name: Current source Model type: Global parameter Model name: Model parameter Model name: Imperature Parameter name: Sweep type Start value: 220
1	C Logarithmic Decade V End value: 1000 Increment: 100
	Value list 660, 880, 1000, 10000

Disse værdier giver følgende grafer:

DC SWEEP med en modstand som parameter.

Kredsløbet:

Opsæt en DC sweep. Primary sweep er en global parameter RVAR (På X-axis) Start value 100, Endvalue 1000, step = 100 ohm.

Max Power transfer:

Her udføres samme simulering, men modstandene er byttet: her ønskes analyseret ved hvilken modstandsstørrelse af R1, der giver størst effektafsættelse, ved R2 = 1K.

PARAMETERS: RVar = 220	Simulation Settings - 1
R2 Ugen Uout V4 1k 12Vde R1 (RVar)	Analysis type: Sweep variable Voltage source Name: V2 Options: Current source Model type: Model type: Model type: Options: Global parameter Model name: Model name: Model name: Options: Global parameter Model name: Model name: Model name: Options: Temperature (Sweep) Temperature (Sweep) Sweep type Start value: 500 Cad Bias Point Load Bias Point Logarithmic Decade End value: 1500 Model ist DK Annuller Anvend Hjælp

DC Sweep, Primary sweep, = X-axis, (Rvar), fra 500 til 1500 ohm, 50 ohm increments.

Det er effekten, der ønskes tegnet graf for. Graferne er adderet med "Add Trace" og indtastning af: V(Uout)*V(Uout) / Rvar. Eller der kan blot vælges W(R1)

Grafen viser max effekt i R1 ved en værdi på Rvar = 1 Kohm. Altså det samme som værdien af R2.

<u>ک</u>

Det bruges ved sammenkobling af elektronik, - fx antenner. Hvis indgangsmodstanden i et antennekabel er fx 75 Ohm, skal udgangsmodstanden af generatoren også være 75 Ohm. Og ligeledes indgangsmodstanden hvor ant3ennekablet tilsluttes. Herved overføres mest energi !!

DC Nested Sweep, Karakteristisk kurve for BJT transistor

Her ønsker vi at sweepe 2 generatorer. X-aksen viser $U_{collector}$, Uc, og Y-aksen viser $I_{Collector}$ ved forskellige værdier af I_{Basis} . Det betyder, I_{basis} er parameter !

Kredsløbet tegnes:

×

Brug en I-Marker

Opsæt en DC Sweep. Der ønskes at sweepe kollector spændingen som den primære sweep, (ud ad X-aksen)

Navnet er V1. Den sweepes fra 0 til 15 Volt.

Increment er 0.01 Dvs. beregninger for hver 10 mV.

Simulation Settings - 1		
General Analysis Include Fi	es Libraries Stimulus Options Data Collecti	ion Probe Window
Analysis type: DC Sweep	Sweep variable Name: I C Voltage source Name: I C Current source Model type: I G Global parameter Model name: I Model parameter Model name: I Temperature Parameter name: I Sweep type Start value: End value: C Logarithmic Decade End value: I	1 0 1m
	C Value list	100u
	OK Annuller Anve	end Hjælp

Herefter opsættes Secondary Sweep.

Det er strømgeneratoren, der skal sweepes.

Start Value er 0

End value er 1m [A]

Increment er 100u [A]

Resultatet er følgende grafer for Icollector ved forskellige værdier af basisstrømmen IB.

I kollector stiger ikke ret meget selvom forsyningsspændingen hæves. Ic er en funktion af IBasis.

Parametrisk sweep kan også bruges:

Når en strøm- eller spændingsgenerator skal sweepes, er der ikke brug for en PARAM component!

VælgParametric Sweep

Vælg Current source, og indtast dens navn.

Indtast start value = 0, End Value = 1m, og Increment = 100u

Analysis type: DC Sweep Variable Options: Primary Sweep Secondary Sweep Monte Carlo/Worst Case Parametric Sweep Temperature (Sweep) Save Bias Point Load Bias Point Value list Sweep type Callo and the second Callo and the second	Simulation Settings - 1 General Analysis Include Fi	iles Libraries Stimulus Options Data Collection Probe Window
	Analysis type: DC Sweep Options: Primary Sweep Secondary Sweep Monte Carlo/Worst Case Parametric Sweep Temperature (Sweep) Save Bias Point Load Bias Point	Sweep variable Image: Source Name: Image: Source Image: Current source Model type: Image: Source Image: Current source Model type: Image: Source Image: Current source Model name: Image: Source Image: Current source Model name: Image: Source Image: Current source Image: Source Image: Source

Resultatet:

Jfet som strømgenerator:

PARAMETERS: Rv = 10

Spændingsgeneratoren V1 varieres fra 0 til 20 volt. (ud ad X-aksen). Der tegnes grafer for forskellige modstandsværdier:

Strømmens størrelse afhænger af modstanden ! Ved 0 Ohm er strømmen størst, og den falder ved stigende modstandsværdier !

Jo mere vandret graferne er, jo mindre ændres strømmen selv ved påtrykning af selv store spændinger. Kan fx bruges foran en lysdiode !

Her ses igen på et potentiometer

Udgangsspændingen undersøges for forskellige setværdier, ved samtidig ændring (sweepning) af den påtrykte spænding fra 11 til 12 Volt:

Simulation Settings - 1 General Analysis | Include Files | Libraries | Stimulus | Options | Data Collection | Probe Window | Analysis type Sweep variable DC Sweep <u>N</u>ame: V1 C <u>C</u>urrent source C <u>G</u>lobal parameter Options: Primary Sweep
Secondary Sweep
Monte Carlo/Worst Case C Model parameter C Temperature Parametric Sweep Temperature (Sweep) Save Bias Point Sweep type Sta<u>r</u>t value: 11 Linear Load Bias Point 12 End value: 🔿 Logarit<u>h</u>mic Decade 🖂 0.5 Increment: ◯ Value li<u>s</u>t |

ΟK

Annuller

Hjælp

Og det sekundære:

Det primære sweep indstilles:

General Analysis Include	Files Libraries Stimulus Options Data Collection Probe Wind	low
<u>A</u> nalysis type:	Sweep variable	
DC Sweep 💌	C Voltage source Name:	
Options:	C <u>Current source</u> Model type:	
Primary Sweep	C Model parameter Model name:	
Monte Carlo/Worst Case	C Iemperature Parameter name: Rset	
Parametric Sweep	Sweep type	
Save Bias Point	Linear Start value: 0	
Load Bias Point	C Lessitui Desete End value: 1	
	Increment: 0.1	
	C Value li <u>s</u> t	

