Orcad oversigter, tips & Trix

Her er samlet en række skemaer og tips og trix, der gør diagramtegning og simulering lettere.

Hop til:

Simulerbare Generatorer Digitale signal-generatorer Nogle interessante komponenter Udvalgte TTL-komponenter (74xx) Oversigt over nogle Tegnesymboler Copy to Clipboard Tips&Trix Grid Snap <u>Tips, Probevinduet</u> <u>Om Konvergensproblemer</u> <u>Diagrammer med busser</u> <u>Ændring af default 5 Volt på gates</u> <u>Plot Window Templates</u>

Atmega328 som tegning Orcad Lite Limitations Shortcuts

Bonus

Generator-oversigt og bibliotek, hvor de kan findes:

Part	Part Name / Bibliotek	Symbol	Kan bruges til
DC Spændingskilde	VDC / Source Place / Pspcice Component / Source / Voltage Source	oVdc <mark>∗</mark> ↓V1	Påtrykke en DC-spænding.
Sinusgenerator	VSIN / Source Place / Pspcice Component / Source / Voltage Source	VOFF = V4 VAMPL = FREQ = AC =	Påtrykke en sinus. Offset er forskydningen over nul. AMPL er amplitude, spidsværdi.
AC-generator, Til at sweepe	VAC / Source Place / Pspcice Component / Source / Voltage Source	1Vac 0Vdc	Påtrykker et kredsløb en sinus, der skal sweepes Til frekvensanalyse. Til Bodeplot.
Pulsgenerator, definerbar. Genererer kontinuerlige definerbare pulser	VPULSE / Source	V1 = V2 = TD = TR = FF = PW = PER =	V1= 0 Volt V2 = fx 12 Volt TD=Delay time, fx 1u TR= Risetime, fx 1n TF = Fall time = fx 1n PW er pulsbredden PER er en hel periodetid

	Place / Pspcice Component / Sour- ce / Voltage Source		
PieceWise Linear Stykvis lineær.	VPWL / Source	V₅	Kan fx bruges til at lave en lineær stigende eller faldende spænding.
Initial Condition	IC1 / SPECIAL	□ + - C = 0	Bruges til at definere en startspænding for en kondensator
2-polet initial condition	IC2 / SPECIAL		Bruges til at definere en startspænding for en kondensator, 2 polet.
Impedanskonverter	Gain / ABM	0-1E3-0	Høj indgangsmodstand, lav udgangsmodstand. Kan bruges foran TTL-gates 1E3 ændres til 1 gang

Digital Generator oversigt

Туре	Navn	Symbol	Kan bruges til
Digital Clock-generator	DigClock / Source	OFFTIME = .5uS _{DSTM1} ONTIME = .5uS DELAY = STARTVAL = 0 OPPVAL = 1	Generere et kontinuerligt digitalt pulssignal Default indstillet til 1 Mega Hz
Definerbar 1 bit signal	STIM1 / Source	DSTM2 S1_rur>-D	Definerbar digital signal, 1 bit Fx til reset af Flip Flops. Dobb. klik og bestem pulsen, fx angiv i Command1 0s 0, i Command2 1u 1, og i Command3 2u 0
Definerbar 4 bit signal	STIM4 / Source	DSTM4	4-bit digital signal, via Bus.
Høj, digital !	\$D_HI / Source	H	Findes i 🧮 / Source
Lav, digital !	\$D_LO / Source		Findes i 🗮 / Source

Oversigt over "Nogle interessante / relevante ORCAD komponenter "

Komponent	Navn / Bibliotek	Symbol	Kommentarer
-----------	------------------	--------	-------------

Modstand	R / Analog	R1 	
Kondensator	C / Analog	C1 □	
Spole	L / Analog	L1 10uH	Husk seriemodstand (kobbermodstand)
Sluttekontakt	SW_Tclose / Eval	TCLOSE = 0 $\begin{array}{c} 1\\ 1\\ 1\\ 1\\ 2\end{array}$	Slutter efter en tid
Åbnekontakt	SW_Topen / Eval	TOPEN = 0 $\begin{array}{c} 1 \\ 1 \\ 1 \end{array}$	Bryder efter en tid
OPAMP	OPAM / Analog		En ideel opamp.
OPAMP	LM324 / Analog	4 U1A 000 LM324	En "rigtig" opamp.
Potentiometer	Pot / BREAKOUT	€	Armen er default sat i midten. Kan ændres i regnearkets søjle SET, fx til 0.2
Potentiometer	R_VAR / Analog	R4 1k	Værdien er default sat til 0.5 Værdien kan ændres i regnearkets søjle SET.
Diode	D1N4148 / Eval	D1 	
Zenerdiode	D1N750 / Eval	D1 □	
Transistor NPN	Q2N2222 / Eval	Q10 Q2N2222	Ala BC337 og BC547
Transistor PNP	Q2n3906 / EVAL	Q2 Q2N3906	Transistoren spejles horisontal Ala BC327 og BC557
Spændingsstyret kontakt	S / EVAL	S VOFF = 0.0V VOF = 1.0V	På venstre side sættes øverst en spænding, og nederst sættes fx nul.
Transformer	XFRM_LINEAR / Analog	₹2	

Batteri	VDC / Source	0Vdc <u></u> V1 	
Symbolsk luft-ledning 2 med ens navne er forbundne.	VCC / Capsym	VÇC	Findes i / Capsym
Nul	0	- <u></u>	Findes i 🕎 / Source Og Place / P

Udvalgte 74xxx kredse til simulering med ORCAD PSPICE

I biblioteket PSPICE / EVAL findes blandt andet følgende 74xx gates, der er interessante i forbindelse med simulering

7400	2-Nand	7410	3-Nand	42A	BCD til Decimal
01	2-Nand-OC	11	3-And	48	BCD til 7-segment
02	2-Nor	14	Inv m/ Hysterese	49	BCD til 7-segment
03	2-Nor OC	20	4-Nand	73	JK-FF
04	Inv	27	3-Nor	74	D-FF
05	Inv OC	28	2-Nor	76	JK-FF med Preset & Clear
08	2-And	32	2-Or	77	Latch 2 bit
09	2-And OC			85	4 bit komparator
				86	2-Exor
				95A	4 bit skiftereg. PI, PO, SI
				96	5 bit skiftereg, med Preset
100	4 bit latch	160	Syncron 4 bit Decade tæller, Preset	248	BCD til 7-segment
107	JK FF med Clear	161	Syncron 4 bit Binær tæller, Preset	273	8 D-FF
132	2-Nand m. Hysterese	164	8 bit skiftereg, PO	279	S-R FF, Aktiv lav
153	4 line til 1 multiplexer	174	HEX D-FF	393	4 bit tæller
154	4 line til 16 mux	184	BCD til Binær	490	Decade Counter
155	DEMUX	185	4 bit binær til BCD		

Oversigt over ORCAD tegne-symboler

Her følger en oversigt over nogle af de tegnesymboler, der kan bruges. Symbolernes navne er for det meste vist sammen med tegningen, og det bibliotek, de kan findes i, er tillige anført.

Bemærk, symbolerne kan ikke bruges til at simulere !!!!

Switch / Discrete	Switch / Discrete	Switch / Discrete		
SW4	SW1	SW1		
		<u> 10 02 </u>		
0-0	`>──□	SW KEY-SPST		
SW DPST	1RSW3			

8

8

Version 05/01 2021

8

Copy to Clipboard

Diagrammer kan direkte highlightes, og kopieres med Ctrl+C, og indsættses i Word.

Simulerede grafer skal kopieres via Window / Copy to Clipboard.

<u>Tips&Trix</u>

Highlight en komponent, Tryk&hold Alt plus Drag, og komponenten kan frigøres fra nettet.

Ctrl + drag, kopierer komponent.

- I Zoom IN
- O Zoom Out
- R Rotate
- W Add Wire
- F4 Repeat
- F6 Cross Hair Kursor

Se evt.: http://www.flowcad.de/AN/FlowCAD_AN_Capture_Tips_und_Tricks.pdf

Toggle Cursor

Med F6 i Capture kan man toggle mellem normal og full screen cursor.

CTRL+F8 giver full screen - tegneareal. Øverst til venstre i skærmen kan man lukke full screen-mode igen.

- See more at: https://community.cadence.com/cadence technology forums/f/27/t/15345#sthash.taZQmKgp.dpuf

<u>Grid Snap</u>

Nogle gange er det rart, at man frit kan flytte tekst, uden at det snapper til grid-punkter.

Det kan gøres ved at trykke på ikonet (??) Snap to grid som er On/Off.

Men det betyder også, at wires ikke snapper, og det er ikke så heldigt.

Men: Åben Preferences --> Grid Display.

Sæt Draw elemente til Fine.

Nu er det indstillet permanent at man kan flytte tekst og tegninger frit, men ikke wires og komponenter.

Konfigurering af resultater i Probe display vinduet

Simulation	n Settings - 1		Elles Options Data Collection Probe Window			
General Analysis		Configuration Files	Options Data Collection		Probe Window	"Probe Window"
Display	Probe V	Windows Wi	nen the	Profile is C	Opened.	Display Probe window when profile is opened
This cau	ses the s	simulation re-	sults to	be automat	tically	

This causes the simulation results to be automatically added and Probe windows displayed whenever the simulation is opened in PSpice.

Display Probe Window: • <u>During Simulation</u>. This opens a Probe window as soon as the simulation sweep begins, so you can watch the waveforms develop as the simulation progresses. • <u>After Simulation</u> has Completed—This opens a Probe window upon completion of the simulation, when all of the data is available.

🔽 Dis	play Probe window: (a) ouring Simulation.
	after simulation has been completed.
Show	
○ AI	I Markers on open schematics.
⊚ La	ast Plot

Nothing

Show Frame: • <u>All Markers</u> on Open Schematics. When a Probe window is automatically opened, it will display traces corresponding to any markers in currently open schematics in Capture. • <u>Last Plot</u>. Reconstructs the Probe window that was last used to view results of this simulation profile.

Kilde: http://www.seas.upenn.edu/~jan/spice/PSpice_CaptureGuideOrCAD.pdf

Ændre default trace width:	Probe Settings				
	General	Large Data File	Cursor Settings	Color Settings	Font Settings
I Show traces:	Use	Symbols Properties	Trace Color S Normal	cheme	Mark Data Points
Vælg Tools / Ontions	Never Always		O Match Axis		Display Evaluation
			 Sequential Per Axis Unique By File 		Highlight Error States
Default Trace width fra ($1-7$)	Use	ScrollBars Auto Never	Auto-Update I	ntervals	
Det kan godt være, programmet skal genstartes	0/	Always	Every 1	0 %	
	2 Default Trace Width				
			OK	Appuller	Peest

Om Konvergensproblemer i ORCAD

Når ORCAD regner på et kredsløb, bliver den ved, indtil den har opnået en vis nøjagtighed i løsningen af et sæt af lineære ligninger.

In order to calculate the bias point, DC sweep and transient analysis for analog devices, PSpice must solve a set of nonlinear equations which describe the circuit's behavior. This is accomplished by using an iterative technique, the Newton-Raphson algorithm, which starts by having an initial approximation to the solution and iteratively improves it until successive voltages and currents converge to the same result.

Kilde: <u>http://www.flowcad.de/AN/FlowCAD_AN_PSpice_AutoConvergence.pdf</u>

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

Where $f'(x_0)$ is the derivative of the function at x_0

Further we have

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

- Voltages and currents in PSpice are limited to +/-1e10 volts and amps
- Derivatives in PSpice are limited to 1e14
- The arithmetic used in PSpice is double precision and has 15 digits of accuracy

In a few cases PSpice cannot find a solution to the nonlinear circuit equations. This is generally called a "convergence problem" because the symptom is that the Newton-Raphson repeating series cannot converge onto a consistent set of voltages and currents.

Normally if you face the convergence problem in PSpice, you have to change the runtime parameters to relax the limits.

Fra artikel af: Matthew Harms, Applications Engineer, EMA Design Automation

Men nogle gange kan default nøjagtighed i beregningerne ikke opnås, og simuleringen stopper og der gives en fejlmelding.

I skemaet der dukker op, er de indstillede nøjagtigheder vist, og man kan evt. forsøge sig med at ændre nogle af dem til større tolerancer.

Men det er svært at forstå hvad de enkelte tolerancer står for, og hvad der sker.

Kilde: Se:

PSpice Runtime Settings				X
	Use Original Value	Change To		
Relative accuracy of V's and I's:	V 0.001	0.001	(RELTOL)	OK
Best accuracy of currents [amps]:	📝 1e-012	1e-012	(ABSTOL)	OK & Resume Simulation
Best accuracy of voltages [volts]:	📝 1e-006	1e-006	(VNTOL)	Cancel
Minimum conductance for any branch [1/ohm]:	📝 1e-012	1e-012	(GMIN)	
Run to time [seconds]:	V 0.001	0.001	(TSTOP)	Help
Maximum step size [seconds]:			(TMAX)	
DC and bias "blind" iteration limit:	V 150	150	(ITL1)	
DC and bias "best guess" iteration limit:	20	20	(ITL2)	nowin
Transient time point iteration limit:	V 100	100	(ITL4)	newm
Autoconverge		Settings	-	16.6
Enable Advanced Convergence Algorithms		Settings]	

Evt. Kan man forsøge at ændre følgende tolerencer til:

$ABSTOL = 0.01\mu$	(Default=1p)
$VNTOL = 10\mu$	(Default=1µ)
GMIN = 0.1n	(Default=1p)
RELTOL = 0.05	(Default=0.001)
ITL4 = 500	(Default=10)

Autoconvergereing

Men heldigvis er der en mulighed for at slå AutoConverge til.

I Simulating settings:

Vælg Options, og sæt hak i AutoConverge.

Men der er vist også en genvej til at slå AutoConverge til når der popper en konvergens-fejl op.

Analog Simulation	Name	Value	Default Value
General	AutoConverge		
MOSFET Option	ITL1	1000	1000
Analog Advanced	ITL2	1000	1000
General	ITL4	1000	1000
Bias Point	RELTOL	0.05	0.05
Gate Level Simulation	ABSTOL	1.0E-6	1.0E-6
General	VNTOL	.001	.001
Advanced	PIVTOL	1.0E-10	1.0E-10
General			

Slås AutoConverge til, lykkes det ofte at komme gennem simuleringen.

×

Version 05/01 2021

Simulation Settings - 1

Hvis man ønsker at kende tolerancerne kan det ses i PSpice i:

View > Output File

Scroll til bunden I filen. Her ses både de oprindelige værdier og de ændrede værdier.

Kilder:

http://www.flowcad.de/AN/FlowCAD_AN_PSpice_AutoConvergence.pdf https://www.youtube.com/watch?v=lw0qtrrNSzI

Brug af Busser i diagrammer

Diagrammer kan forenkles – eller overskueliggøres – ved at give ledninger labels.

To ledninger med samme label, er "forbundet".

Det er vist her med et par eksempler:

Ledningerne hænger sammen, hvis blot de har samme label.

Men man kan yderligere forbedre et diagram ved at tegne flere ledninger sammen i en såkaldt "BUS".

I Bussen holdes der styr på de enkelte forbindelser vha. Labels, dvs. navne, der angiver, hvilken ledning, der er tale om.

Der kan benyttes specielle Busconnections for at få diagrammet til at se lidt "bedre" ud.

Diagrammet kan tegnes med eller uden bus-connections:

Her er der ikke brugt "Bus Connection" for wire A4.

Man kan sagtens koble digitale og analoge signaler sammen i samme bus.

Følgende er et eksempel med en tæller.

Husk at initiere alle FF til 0. (Edit Simulation Settings / Options / Gate-level Simulation /

General				
	 Analog Simulation 	Name	Value	Default Value
Analysis	General	DIGMNTYMX	Typical	 Typical
Configuration Files	Auto Converge	NOPRBMSG		
Comparation Piles	MOSSET Option	DIGINITSTATE	0	×
Options	modreropion	DIGIOLVL	1	- 1
Data Callertine	 Analog Advanced 			
Data Collection	General			
Probe Window	Bias Point			
	Transient			
	 Gate Level Simulation 			
	General			
	Advanced			
	Permitted			
	 Output File 	Timing mode		
	General			
	General			

Hvis der gives Net-alias med et tal til sidst, fortsætter tallet automatisk med at stige når man sætter label på næste wire.

Der er flere måder at lave bus-connections på:

Manuel:

Start med at tegne en bus. Sæt så Bus-entries på, og forbind med wires.

Og giv så wiren en label, så matematikken forstår !!

Men det er også muligt at få hjælp. (kan godt give problemer, mit program crashede flere gange !!

Tegn en bus, og giv den labels. Fx A0 til A7

Det gøres ved at vælge Label, og skrive A[0..7], og sæt den på bussen. (i firkantet parentes: 0 punktum punktum 7)

A[0..7]

Eller A[0-7]

Nu fremkommer en ny cursor. Klik først på de forbindelser, der skal ind i bussen, og dernæst på bussen.

Der foreslås nu nogle netnames, fordi bussen har fået disse navne !!

Enter Net Names	?	×
Pins Selected :	2	
A[07]]
ОК	Cancel	

En bus kan tegnes i 45 grader ved at bruge en bus-entry i hjørnet !!

Syntax er fx A[9:0], hvor A9 er mest betydende bit. – Men her vises kun 4 bit resultat.

Eksempel med 2 Busser

Og tilhørende graf:

Eksempel med 4518:

Og den tilhørende graf:

Se YouTube om bus og labels:

3:49: https://resources.orcad.com/orcad-capture-tutorials/orcad-capture-tutorial-04-connect-parts

Og 1:43, https://resources.orcad.com/orcad-capture-tutorials/orcad-capture-tutorial-05-net-aliases

Ændring af default 5 Volt på digitale komponenter

1)

Indsæt en komponent, en CD4000_PWR fra bibliotek Special et sted i diagrammet.

Ændre værdien Reference til 0, og Voltage til ønsket værdi. Max 15 V

CD4000 Interface Pwr Supply	CD4000 Interface Pror Supply
VOLTAGE = 5V	VOLTAGE = 12V
REFERENCE = X1	REFERENCE = 0
	· · · · · · · · · · · · · · · · · · ·
	<pre>^ ^ ^ ^ ^ VSS_Node> ^ ^</pre>

Højreklik på den, vælg Edit Properties, og sæt hak i "Power Pins Visible" (Scrol hen til højre)

erence	PCB Footprint	Power P	ins Visible	Primitiv
		C		DEFAUL

Eller dobbeltklik på CD4000_PWR komponenten.

2).

Dobb-klik nu de digitale kredse, og gør tilsvarende deres powerpins synlige.

3).

Forbind spændingsforsyningen fra VDD til gatenes + med wire eller Netname Forbind fra DigGND, digital stel, VSS til gatenes 0, Og referencen til kredsløbets stel.

Alle gates skal forbindes.

Bemærk, at der er brugt "luftledninger". Hvis en ledning får et "netname", er den forbundet til andre ledninger, der har samme navn.

Et par eksempler mere!

æ

Plot Window Templates

I stedet for at lave opsætninger i PSPICE oscilloscopet, PROBE, hver gang man har simuleret, kan man bruge specielle markører, der har præ-opsætning af simuleringsresultaterne. Fx kan man få tegnet Bodeplot og fase i PROBE med kun 1 markør. Og tilmed findes der markører, der giver 2 Y-akser, der giver 2 X-akser mm.

De specielle markører findes i: Pspice / Markers / plot Windows Templates

Her gives mulighed for at vælge forskellige markører, alt efter hvilken simuleringsprofil, der er opsat.

Er der opsat en transient simulering (tiden ad X-aksen) findes disse.

I Description vinduet ses en forklaring til de forskellige mulige markører.

Her er valgmulighederne efter at en AC-sweep er sat op !!

Plot Window Templates	5		×
3dB Bandwidth - Band p 3dB cut-off frequency - H 3dB cut-off frequency - L Admittance Bode Plot - dual Y axes Bode Plot - separate Bode Plot dB - dual Y ax Bode Plot dB - separate Current Gain Impedance	ass [multi-i figh pass .ow pass [es	^	Place Cancel Help
	>		
Description: After multi-run AC analysis: plots the 3dB bandwith vs. the stepped parameter, or as a histogram in case of Monte Carlo analysis. Requires a band pass			
response.			~

I ruden for neden forklares, at der med denne marker laves to grafer over hinanden. dB og fase i separate grafer.

Kredsløbseksempel:

Og Graferne:

Ønskes indgangsimpedansen målt, kan den umiddelbart beregnes og gengives med en markøren Plot window template, Impedance.

Markøren består af en dobbelt markører. Først placeres den første, en voltage markør på en wire, dernæst strømmarkøren på en komponent-pin som vist:

Atmega328P som tegneobjekt i Orcad

Hent AVR.olb

(jeg har den !!)

Biblioteket skal vist placeres i Captures Library hvor de andre ".olb"-filer ligger.

I biblioteket er der mange tegninger. Vælg ATmega168-DIL28small. Klik på navnet og lav 168 om til 328.

Orcad Lite limitations

Orcad Lite kan ikke simulere alle komponenter, og ikke så mange nodes, dvs. knudepunkter.

Men typisk nok til vores brug.

PSpice 17.2 Lite has the following limits with design site and complexity:

- PSpice Lite:
 - Circuit simulation limited to circuits with up to 75 nodes, 20 transistors, no subcircuit limits but 65 digital primitive devices, and 10 transmission lines (ideal or non-ideal) with not more than four pairwise coupled lines.
 - Device characterization and parameterized part creation using the PSpice® Model Editor limited to diodes.
 - o Includes all libraries, including parameterized libraries.
 - No limit to stimulus generation using Stimulus Editor.
 - Sample model library named eval.lib (containing analog and digital parts) and evalp.lib (containing parameterized parts) are provided.
 - You cannot use Level 3 of Core model (Tabrizi), MOSFET BSIM 3.2, or MOSFET BSIM 4 models.
 - The maximum nodes in a digital circuit can be equal to or less than 250.
 - o The non-ideal Tline is limited to 4.
 - o The PSpice DMI models are not supported in the Lite Version of the simulator.
 - IBIS import is not supported.
 - Device model interface (DMI) is not supported.
 - o PSpice SLPS flow is not supported.

Se også: <u>https://www.ema-eda.com/resources/library/orcad-lite-product-reference</u> <u>https://www.orcad.com/sites/orcad/files/resources/files/orcad-17.2-2016-lite-limits.pdf</u>

Grid Snap

Det er smart, at komponenter snapper til grid, og at wires også gør det. Dette sikrer forbindelser.

Men tekst behøver ikke at snappe til grid.

Til højre er vist Grid snap ikonet.

Gridsnap ON

Gridsnap Off

Men der kan indstilles, så kun tekst er off grid.

Options / Preferences / Grid Display

Marker "Drawing Elements " som Fine.

Shortcuts i ORCAD mm

Shortcut	Beskrivelse
i	Zoom in

0	Zoom out
с	Panorering på skærmen. Der, hvor cursoren er, bliver centreret på skærmen. Kan også bruges som dynamisk panorering ved at holde c nede, mens musen flyttes.
Ctrl + t	Toggle grid snap.
F4	Repeat sidste handling
h	Spejle highlightede objekter horisontal
v	Spejle highlightede objekter vertical
r	Roter
W	Placer wire
b	Placer Bus
р	Pop dialogboksen "Placer Part / komponent" op.
f	Placer Power (VCC)
g	Placer ground
t	Placer text, dialog box.
n	Placer Net Alias, Netname
j	Placer junction, forbindelse
e	Placer busentry
e	Hvis værktøjet "draw wire" eller bus er valgt, vil <u>e</u> stoppe denne handling.
Esc	Retur til Pointer værktøj, luk dialogboks
Ctrl + F4	Luk Property editor
Ctrl + Move	Kopier highlighted dele
Alt+Move	Flyt highlighted dele
Ctrl+Tab	Retur fra menu
0	(Nul) Placer stel ??

Brug aldrig Æ, Ø og Å i filnavne

Brug aldrig spaces i NetAlias. En wires netalias kan ses ved at dobbeltklikke på den og læse dens spreadsheet.

I designcasche kan der blot skrives R, C osv. Så søges der i adderede biblioteker !! Virker også på komponenter, der ikke har været brugt før i designet.

F6 toggler cursoren !!

Bonus, skal redigeres

Bonus

SCHEMATIC PAGE AND PART EDITORS

8

ALL CAPTURE WINDOWS

Version	05/01	2021
v ci sion	05/01	2021

Key	Mouse click equivalent
CTRL+A	Select All
Α	Ascend hierarchy
D	Descend hierarchy
В	Place bus
E	Place bus entry
F	Place power
G	Place ground
J	Place junction
Ν	Place net alias
Р	Place part
т	Place text
W	Place wire
Υ	Place polyline

http://www.wictronic.ch/Downloads/PSpice/Version_10_5/manuals/Capture_Quick_Reference_10_5.pdf

Følgende: Pr. 2003 !! Shortcut taster

Tastetryk	Funktion i Capture og Capture CIS
i (i som India)	Zoom ind
o (o som Oscar)	Zoom out
c (c som Charlie)	Zoom center - centrerer skærmen omkring muse
	kursoren. Holdes C nede vil Capture panorere og giver
	dermed en hurtige scroll end brugen af scroll
	panelerne.
p (p som Papa)	Place Part
w (w som Wiskey)	Place Wire
b (b som Bravo)	Place Bus
e (e som Echo)	Place Bus Entry
n (n som November)	Place Net Alias (net label)
j (j som Juliet)	Place Junction
g (g som Golf)	Place ground
f (f som Foxtrot)	Place Power
x (x som Xray)	Place Noconnect
t (t som Tango)	Place Text
Shift+D	Descend Hierarchy - hopper ned i den markerede
	hierarkiblok
Shift+A	Ascend Hierarchy - hopper et niveau op i hierarkiet