Orcad Capture version 16.6 En Intro

Dette kompendium giver en kort introduktion til simulering med ORCAD.

Kompendiet er baseret på en ORCAD-version 9.2, - så hvis der er ting i kompendiet, der ikke er opdateret, Please, giv mig et vink!

Index: Generelt, <u>Opret projekt</u>, <u>Diagram-Tegneværktøj</u>, <u>Biblioteker</u>, <u>Søg Komponenter</u>, <u>Nandgate-oscillator-eksempel</u>, <u>Placer Ground</u>, <u>Net_alias</u>, <u>Placer Probe</u>, <u>Ny Simulation Profil</u>, <u>Time Domain</u>, <u>Run Simulation</u>, <u>Kopier Graf til Word</u>, <u>Kopier diagram til word</u>, <u>Rediger Diagram</u>,

Der mangler nogle links!

Se fx links på nettet:

Bias Point: <u>http://tuttle.merc.iastate.edu/ee201/spice/pspice_DC.pdf</u> God tutorial: <u>http://userweb.eng.gla.ac.uk/john.davies/orcad/spiceintro163.pdf</u> <u>http://fd.valenciacollege.edu/file/mejaz/CET%203464%20-%20PSpice%20Tuto-</u> rial%20-%20Edition%202.pdf

Videoer: <u>http://www.youtube.com/watch?v=AwUmqxsdweQ&list=PLC85F0C97B6D0EE8C</u> (Serie med 20 videoer, Høj lyd)

Bodeplot: <u>http://www.youtube.com/watch?v=YnN9WMRqg4E</u> <u>http://www.youtube.com/watch?v=keRYHKQGDxw</u> (Evaluate graf)

Generelt:

ORCAD Capture og PSPICE fra Cadence version 16.6 kan både bruges til at tegne diagrammer og det, det er beregnet til, at simulere et tegnet kredsløb.

Capture er den del, der bruges til at tegne et diagram, PSPICE er beregningsdelen, og endelig er der PROBE, der viser grafer over beregnede data.

I CAPTURE er der et hav af færdig-tegnede komponenter til at tegne et kredsløb med. Men der, hvor ORCAD virkelig er stærk, er ved simulering af kredsløb. Ideen er, at man i stedet for at opbygge et test-kredsløb blot kan simulere det på PC.

Med simulering kan man undersøge elektroniske kredsløb. Hvad sker der, hvis man sætter en DCspænding på, eller en sinus-spænding. Hvad sker der ved forskellige frekvenser, osv.

Orcad Capture kan starte op i en evaluation version, - dvs. en gratis version. Men den har så nogle begrænsninger. Langt de fleste komponenter i denne gratis "evaluation"- version er desværre kun beregnede til at tegne diagrammer med.

I en fuld version af programmet, kan alle komponenter simuleres!!

Men til vores brug er programmet dog ret genialt! – til prisen!

Men studerende kan få en gratis version !!! Mangler

CAPTURE

Start ORCAD Capture

Det er det program, hvori man tegner diagrammer, både til blot at tegne, og til at tegne diagrammer, der skal simuleres.

For <u>hver opgave skal der oprettes et nyt projekt</u>. Hvis man ikke gør det, vil man helt sikkert komme ud i problemer!!

Vælg "<u>File new Project</u>". Opret et bibliotek til hvert projekt med et fornuftigt, sigende navn. Og giv også projektet et sigende navn.

Det er vigtigt, **<u>ikke at bruge æ, ø, og å</u>** i stier eller filnavne. Det gælder hele stien!! Ellers giver det med garanti problemer.

Startbilledet giver mulighed for at vælge, hvad man vil.

Vælg Projekt, New.

Herefter skal der vælges, hvad der skal startes op i projektet.

Vælges <u>Schematic</u>, kan man kun tegne diagrammer.

Vælges "<u>Analog or Mixed A/D</u>" kan man lave simuleringer af det tegnede.

Forskellen ligger kun i, hvilke komponenter, man må tage ind fra bibliotekerne. Og hvor meget, projekterne kommer til at fylde på Harddisken!

Vi skal ikke bruge de to punkter, PC Board, eller Programmable Logic!

Tip: Vælg Altid Analog or Mixed A/D

Vælges at tegne diagrammer beregnet til simulering, dvs "Analog og Mixed A/D", fås følgende vindue:

Der skal vælges et blankt projekt!

Til et projekt oprettes et antal filer, herunder nogle designs, og herunder igen nogle Pages

Herefter er man klar til at tegne diagram!

Efter de indledende valg, fås et vindue med en tegneflade, hvor man placerer sine komponenter:

New Project	×
Name	OK Cancel
Create a New Project Using Analog or Mixed A/D Create a New Program Wizard PC Board Wizard Programmable Logic Wizard Schematic	Help Tip for New Users Create a new Analog or Mixed A/D project. The new project may be blank or copied from an existing template.
Location C:\Users\vald0159\Documents\Egne Orcad_16.	5-projekter Browse

Create PSpice Project	×
© <u>C</u> reate based upon an existing project	ОК
AnalogGNDSymbol.opj 👻	Browse
Create a blank project	Cancel <u>H</u> elp

DrC/	AD Ca	aptur	e CIS	- Lite	- [/ ·	- (SCH	IEM	ATIC:	1 : P	PAGE1	L)]																				L			
File	e De	esign	Edit	: Vi	ew	Tools	s F	lace	S	I Anal	lysis	Macro	PSp	ice	Ac	cessor	ies	Opti	ons	Wind	ow	Help								cāo	den	ce	-	8
1				4	D	Ê	5	é	>					- (Ð	Q	Q	Q	۲	U7							I,	-C	?					_
				_	1					0	0	0	0 0			-			No.				-	_	_	 _								
					N					16	%	16 /	0				Ч	W	1															
	9.9.0			w Berl	집~		R		a 1		M		2 6	, ≣																				
																																1		
St	tart Pa	age	te Ko	mpen	diu		P	AGE1	L																								\mathbb{R}	ALC: N
																										 							1	1
																																	3	
																																	- 	
																																	-	
																																	٦.	
																																	1	
																																	1	
																																-	늪	
																																-		
																																	0	
																																	P	
																																	L-	
																																	R	
																																	-	
																																	-3	
																																	R	
																																	12	
																																	NS	
																																	~	
																																	4	
																																	-	

Øverst ses følgende iconer: Kilde #1

Tegne-Værktøjer

 $^{^{1} \ \}underline{http://userweb.eng.gla.ac.uk/john.davies/orcad/spiceintro163.pdf}$

I højre side af Captureskærmbilledet findes en række værktøjer til brug ved diagramtegning.

De nederste er kun til at tegne fx hjælpe-linjer og kasser på et diagram.

Føres musen over knapperne, ses et skærmtip med knappens funktion:

Der er to muligheder for at få adgang til komponenter til simulering.

Enten kan man gå via forskellige biblioteker, men hvis det blot drejer sig om de mest gængse komponenter, kan man vælge dem fra menuen:

Vælg Place / PSpice Component:

Og find de ønskede komponenter.

Addering af biblioteker til projektet:

	<u>P</u> la	ce SI A <u>n</u> alysis	<u>M</u> acro	PS	pice	<u>A</u> c	cesso	ories	<u>O</u> pti	ons	Wind		
1		<u>P</u> in Pin Array			-	Ð,	Q	Q	Q	۲	U7		
1	8	<u>P</u> art	P			1v	n	11	\bigcirc	34			
		PSpice Compor	ient	×		PSpi	ce <u>G</u> r	ound					
		Parameterize <u>d</u> P	art			Capa	acitor						
1		<u>D</u> atabase Part	Z			Diod	le				- 1		
	1	<u>W</u> ire	W			Indu	ctor				- 1		
1		Auto Wire		۲		Resis	stor				- F		
	٦,	<u>B</u> us	В			Diait	tal				ъ I		
•	÷	Junction	J			Disc	rete				- E		
ş	1	Bus <u>E</u> ntry	E			Pass	ives				- E		
1	abc	Net Alias	N			Sour	ce				ъĒ		
1	Van I	Power	F			-	-1-				-1		
	÷	<u>G</u> round	G			Sear	c <u>n</u>						
	۵.	Off-Page Conn	ector			Mod	leling	Appli	icatio	n	•		

Alternativt kan man gå via addering af relevante komponent-biblioteker, og finde de ønskede komponenter til diagrammet.

Vælg øverst "Place Part": for at åbne biblioteks-funktionen.

*****0

Biblioteker tilknyttes projektet med

I en fuld version er der et hav af biblioteker med komponenter, der kan bruges.

I evaluation-versionen ikke så mange.

Og der er endvidere flere biblioteker med komponenter, der ikke hat tilknyttet matematik, dvs. de kun kan bruges til at tegne kredsløb.

👫 Browse File	22.00	Read The State			×
<u>S</u> øg i:	📗 library		•	G 🤌 📂 🛄 -	
æ	Navn	~	-	Ændringsdato	Туре 🔺
	🌗 fpga			29-04-2013 20:39	Filmap _
Seneste steder	퉬 iec			29-04-2013 20:37	Filmap
	퉬 ieee			29-04-2013 20:37	Filmap
	🌗 ieeelibs			29-04-2013 20:37	Filmap
Skrivebord	퉬 oldlibs			29-04-2013 20:37	Filmap
<u> </u>	🜗 pspice			29-07-2014 18:05	Filmap
67	퉬 ttl			29-04-2013 20:39	Filmap
Biblioteker	📓 Amplifier.ol	b		18-08-2009 09:43	OLB-fi
	🖻 Arithmetic.c	olb		18-08-2009 09:43	OLB-fi
	ATOD.OLB			18-08-2009 09:43	OLB-fi
Computer	BusDriverTra	ansceiver.olb		18-08-2009 09:43	OLB-fi 🛫
	•	III			•
	Filesue:	I			Åbo
Netværk	rinavn.			L	ADI
	Filtype:	Capture Library(*.olb)		▼	Annuller
		🔲 Åbn som sk <u>r</u> ivebeskyttet			

Gå ind i biblioteket PSPICE.

Herfra skal som minimum ? adderes biblioteket Analog og Source.

👫 Browse File				×
Søg i:]] pspice		- 🗿 🤌 📂 🛄 -	
(Ang	Navn	*	Ændringsdato	Туре 🔺
	🌗 advanls		29-04-2013 20:40	Filmap
Seneste steder	퉬 modeled		29-04-2013 20:37	Filmap
	1_shot.olb		17-08-2009 17:41	OLB-fi
	🖪 74ac.olb		17-08-2009 17:41	OLB-fi
Skrivebord	74act.olb		17-08-2009 17:41	OLB-fi
F	74als.olb		17-08-2009 17:41	OLB-fi
677	🖪 74as.olb		17-08-2009 17:41	OLB-fi
Biblioteker	🖪 74f.olb		17-08-2009 17:41	OLB-fi
	🖪 74h.olb		17-08-2009 17:41	OLB-fi
	🖬 74hc.olb		17-08-2009 17:41	OLB-fi
Computer	🖻 74hct.olb		17-08-2009 17:41	OLB-fi 🛫
	•	III		•
	Filnavn:			Abn
Netværk	51			• "
	Filtype:	Capture Library(*.olb)	•	Annuller
		🔲 Åbn som skrivebeskyttet		

Simuler-mulige biblioteker i evalu- ation mode: : Mangler	Pspice / Analog
--	-----------------

Gå ind i biblioteket / pspice. Adder Analog og Source til projektet!

Af: Valle Thorø

Bias Simulering:

Find modstande, en spændingsgenerator og Ground via menu-systemet.

Eller via biblioteker:

Der skal her adderes minimum bibliotekerne ANALOG og Source.

I analog vælges en modstand "R" og i Source en VDC.

×

Komponenterne skal forbindes med en wire. Shortcut: W, eller vælg "Place Wire".

Der skal også angives, hvor Ground, Gnd, dvs. spændingen 0 er!

Ellers kan kredsløbet ikke regne!

Place	SI Analysis	Macro	PSpice	Ac	cess	ories	Opti	ons	Wind
<u>P</u> ir Pir	n n Arrav		•	Ð,	Q	Q	Q	۲	U?
Re Pa	rt	P		1v		11	Ŵ	74	
PS	pice Compor	nent	•	PSp	ice <u>G</u> ı	round			
Pa	rameterize <u>d</u> P	Part		Сар	acito	r			

Eller gå via bibliotek-vejen:

Klik på

og vælg 0/Source eller 0/CAPSYM.

Måske skal biblioteket Source adderes ??

Place Ground		
Symbol: 0 \$D_HI/SOURCE \$D_LO/SOURCE 0/CAPSYM 0/SOURCE GND/CAPSYM +	<u> </u>	OK Cancel Add Library Remove Library Help
Librates: CAPSYM Design Cache SOURCE	Name: 0	
Use 0/CAPSYM symbol to place NetGroup Ground Show UnNamed NetGroup 	a de ground	Ţ

Kredsløbet ser nu således ud.

Der skal nu angives størrelse af komponenterne: Dobbeltklik på værdierne, og angiv ønskede værdier:

Fx følgende værdier skal beregnes:

Det er meget smart at undgå, at programmet tildeler de forskellige knudepunkter (Nets) nogle kryptiske navne.

Derfor Vælg Place net alias, Indtast og sæt sigende navne på knudepunkterne: Shortcut: N

Obs: Ingen mellemrum, - og ingen æ, ø eller å!

Placer sigende navne på relevante knudepunkter:

OBS:

Hvis 2 ledninger har samme navn, opfattes de som forbundne!

Klik nu på " New Simulation Profile "

Kald blot Simuleringen og de data, der kommer ud af det for et 1-tal. Alternativ fx Bias.

Nu er der mulighed for at opsætte en simuleringsprofil. Dvs. hvad der skal simuleres. Det er den anden knap.

Vælg Analysis / Bias Point.

Klik Anvend og OK

Tryk dernæst på RUN, den grønne pil.

Nu kan man klikke på en af de grønne knapper, Voltage, I for Strøm og W for Effekt for at få vist de beregnede spændinger mm.

										-						3					51	6.2	2m\	/	
	12.00V	U_cc	∕⊻	1 //		-	A	-		1.6	519	V	-	•		Ŵ	V		Ē	3					
			5.	6K						1.	619)m/	N.		2	4.7	< ¹						2	34.	6uA
12Vdc	V1	1	.854m	A					> > >	R2 1k												>>>	R4 2.1	4 2k	
.														23	4.6	uΑ									
	1.854m	A																							
				0V																		 			
1.1.7	<u>–</u>																								

Endelig er der beregnet, og Bias-spændinger er angivet på diagrammet.

Tilsvarende kan der vises strømme og effektafsætning.

De målte angivelser er omarrangeret med musen!

Søgning efter komponenter:

Capture giver mulighed for at søge efter en specifik komponent. Fx en tæller 4017.

Måske hedder komponenten noget til "fornavn" og "efternavn", derfor indtastes *4017*, og Part Search klikkes.

I næste vindue kan søge-biblioteket angives.

Vælg bibliotekets rod, altså / Library.

Highlight ønskede komponent / bibliotek, og klik OK.

Herved adderes biblioteket, og komponenten kan placeres.

Transient Simulering

Adder biblioteket CD4000.OLB

🗔 s	Search for Part	
Search	h For	- 🕋
Path	C:\Cadence\SPB_16.6\tools\cap	tur
Librarie	BS	
Select		

Når en komponent er valgt, kan man vælge, hvilken af de, der er i pakken, man vil bruge.

Fx er der jo 4 NAND-gates i en 4093.

Der skal opbygges et diagram :

<u>P</u> art	16 Q
CD 4093B	
Part <u>L</u> ist:	Y
CD 4086B	
CD 40938 CD 40958 CD 40968 CD 40998 CD 40998 CD 45028 CD 45028 CD 45088	
Lįbraries:	C 🖱 X
ANALOG BIPOLAR CAPSYM	* E
CD4000 COUNTER Design Cache	•
U?A 2 CD4093B	Packaging Parts per Pkg: 4 Par <u>t</u> : A Type: Homogeneous
Normal O Convert	

Find en kondensator i Analog / C

Placer den, evt. brug "R" til at rotere den! Placer også en modstand, fra Analog / R

Og endelig skal der en Stel, Ground eller nul til, for at programmet kan beregne hvilke spændinger, der opstår.

Det kan være nødvendigt her at addere en komponentbibliotek der hedder CAPSYM.

Vælg 0.

Place Ground		×
Symbol: \$D_HI/SOURCE \$D_LO/SOURCE 0/CAPSYM O/SOURCE GND/CAPSYM Ubratien:	<u> </u>	OK Cancel Add Library Remove Library Help
CAPSYM Design Cache SOURCE	Name:	
Use 0/CAPSYM symbol to plac	e a dc ground	

C1 1u

0

abc

Diagrammet skal nu se således ud !!

Dobbeltklik på default komponentværdier, og angiv ønsket værdi:

Der skal endvidere placeres navne på de forskellige ledninger. De kaldes her Net alias:

Ved hjælp af Proben, der ligner en probe fra et Oscilloskop, kan man efter en simulering få vist en graf:

U1A

2

R1 W 1k 3

CD4093B

Når diagrammet er færdigt, skal der opsættes en Simuleringsprofil: Denne er beregnet til at angive, hvilken type simulering, man vil foretage, og hvor længe man vil lade beregningerne køre:

Opsætning af Simuleringsprofil kan også gøres med at klikke på den venstreste af følgende knapper:

Bare kald den for et 1-tal.

New Simulation	×
Name:	Create
	Create
Inherit From:	Cancel
none 🔻	
Root Schematic: SCHEMATIC1	

Herefter skal man angive simuleringstype, og varighed.

Vælg Time Domain for at få tiden ud ad X-aksen.

Angiv Runtime til fx: 50m

Dvs. 50 millisekunder.

Vælg Anvend og OK, og klik på Run:

Coniguration	on Files Options Data C	ollection	Probe Window		
Analysis type: Time Domain (Transient) 🔻	Run to time:	50m	seconds (TSTOP)		
Options:	Start saving data after:	0	seconds		
Monte Carlo/Worst Case Parametric Sweep Temperature (Sweep)	Maximum step size: seconds				
Save Bias Point Load Bias Point Save Check Points Restart Simulation	Run in resume mode		Output File Options		

Simuleringen skulle herefter gerne dukke op i et nyt vindue !!

Resultat-vinduet, - eller Probe-vinduet kan hentes over i Word ved at vælge

Og dernæst afgøre, hvordan farver osv. skal med i den Color Filter, der dukker op:

Background	
nake window and plot backgrounds transpa	arent
Foreground	
use screen colors	
💿 change white to black	
🔘 change all colors to black	

Diagrammer kan hentes til Word blot med indramning med musen, - og så copy&paste over i Word. ($\,$ Ctrl-C $\,$ og Ctrl-V $\,$)

Endnu et eksempel på en simulering:

Simuleringen køres med 🕨

Efter simuleringen, vises automatisk et vindue med grafer.

Redigering i et diagram:

Highlight placerede komponenter. Alt+move mouse flytter de valgte komponenter.

Kontrol + move kopierer komponenter. Det skal man dog passe på med, idet alle placerede komponenter har fået tildelt et unikt navn. Ved simulering kan man ikke have to komponenter med samme navn.

Mangler: Bias: PWL, to metoder, og DC-sweep generator, Sinus, AC-Sweep, Bode-Plot, Digital simulering:

Generatorer:

Når man undersøger kredsløb, skal de jo påtrykkes et signal, eller en spænding. Hertil tilbyder ORCAD en række: De findes i biblioteket Source, eller

Generatorer

Part	Part Name / Biblio- tek	Symbol	Kan bruges til
DC Spændingskilde	VDC / Source	0Vdc ⁺ ↓ V1 -⊤	Påtrykke en DC-spænding.
Sinusgenerator	VSIN / Source	VOFF = VAMPL = FREQ = AC =	Påtrykke en sinus. Offset er forskydningen over nul. AMPL er amplitude, spids- værdi.
AC-generator, Til at sweepe	VAC / Source	1Vac 0Vdc	Påtrykker et kredsløb en si- nus, der skal sweepes Til frekvensanalyse. Til Bodeplot.
Pulsgenerator, definer- bar. Genererer kontinuerlige definerbare pulser	VPULSE / Source	V1 = V4 V2 = V4 TD = H TR = H TF = PW = PER =	V1= 0 Volt V2 = fx 12 Volt TD=Delay time, fx 1u TR= Risetime, fx 1n TF = Fall time = fx 1n PW er pulsbredden PER er en hel periodetid
PieceWise Linear Stykvis lineær.	VPWL / Source	↓v5 ↓	Kan fx bruges til at lave en lineær stigende eller fal- dende spænding.
Initial Condition	IC1 / SPECIAL	[+]IC= 0	Bruges til at definere en startspænding for en kon- densator
2-polet initial condition	IC2 / SPECIAL		Bruges til at definere en startspænding for en kon- densator, 2 polet.
Impedanskonverter	Gain / ABM	1E3-0	Høj indgangsmodstand, lav udgangsmodstand. Kan bru- ges foran TTL-gates 1E3 ændres til 1 gang

Generator oversigt, Digital

Туре	Navn	Symbol	Kan bruges til
Digital Clock-generator	DigClock / Source	OFFTIME = .5uS _{DSTM1} ONTIME = .5uS DELAY = STARTVAL = 0 OPPVAL = 1	Generere et kontinuerligt di- gitalt pulssignal Default indstillet til 1 Mega Hz
Definerbar 1 bit signal	STIM1 / Source	DSTM2 S1	Definerbar digital signal, 1 bit Fx til reset af Flip Flops. Dobb. klik og bestem pul- sen, fx angiv i Command1 0s 0, i Command2 1u 1, og i Command3 2u 0
Definerbar 4 bit signal	STIM4 / Source	DSTM4 S4_rrp=0	4-bit digital signal, via Bus.
Høj, digital !	\$D_HI / Source	H D	Findes i 7 / Source
Lav, digital !	\$D_LO / Source		Findes i 🗮 / Source

Bode Plots

For the magnitude plot, use the PSpice DB() function to convert the transfer function to decibels. For example, you could type in DB(V(Vout)/V(Vin)) as your Trace Expression, assuming you have

Af: Valle Thorø

labeled your output and input nodes with "Vout" and "Vin" aliases. Note that DB(Vout) is NOT the transfer function in dB.

2) Next, mark the cutoff frequency on the magnitude plot. To find the cutoff frequency, remember the cutoff frequency is 3dB below the highest point (NOT always at -3dB). Here are some instructions on how to label the cutoff frequencies.

a. Click the "Toggle Cursor" button. (Or go through the menu, Trace => Cursor => Display.)
b. Click the "Cursor Max" button to find the highest point. (Or go through the menu, Trace => Cursor => Max.)
c. Click the "Mark Label" button to label the max point. (Or go through the menu, $Plot => Label => Mark$.) This point is the center frequency f_0 for a bandpass filter.
d. Click the "Cursor Search" button (Or go through the menu, Trace => Cursor => Search Commands)

e. Select 1 for Cursor To Move to search along the y-axis

f. To find the cutoff frequency f_c (or cutoff frequencies f_{cl} and f_{cu} for a bandpass filter), enter "search forward level (max-3)" (don't enter the quotation marks) to move the cursor to the right to the point which is 3dB below the max. Or enter "search back level (max-3)" (don't enter the quotation marks) to move the cursor to the left

Search Command	Search Command
search forward level (max-3)	search back level (max-3)
<u>C</u> ursor To Move:	Cursor To Move: 💿 1 🔘 2
<u>D</u> K <u>C</u> ancel	<u>Q</u> K <u>C</u> ancel

- f. Click the "Mark Label" button to label that cutoff point.
- Unclick the Toggle Cursor button to disable the cursor so you can move the label.
- Double click on the label to edit the text (to add units, or to name the point)

3) Once you have completed the magnitude plot, you will now need to create a phase plot. To put the plot on the same window for convenience, go to Plot => Add Plot to Window. To graph the phase plot, use the PSpice P() function. For example, P(V(Vout)/V(Vin)).

4) To label the cutoff frequencies on the phase plot, simply search for the angles that correspond to each cutoff frequency. You can find these in the class lecture notes. For example, for a passive lowpass filter, the cutoff frequency is located where the phase shift is -45 degrees. So on the plot, you would search for -45 and then label that point.

5) It may help to increase the width of the lines in the plot:

- a. The colored symbol at the bottom of the graph, or on the graph line.
- b. Note you can select all of the lines by going to Edit => Select All.

c. Right click on the line. Make sure the selection list has Information, Properties, Cursor 1, and Cursor 2. (If it lists Settings and Properties, you clicked on the background, not on the line).

- d. Select Properties.
- e. You can change the width and other settings of that trace.

6) An example of a complete Bode plot with labels is shown below:

Kilde: Søg på " Notes for ORCAD PSpice "

Copy to Clipboard

Diagrammer kan direkte highlightes, og kopieres med Ctrl+C, og indsættses i Word.

Simulerede grafer skal kopieres via Window / Copy to Clipboard.

Spændingskontrolleret switch

I Pspice / Analog findes en spændingskontrolleret switch. Den har navnet "S".

Der skal være en lille spændingsforskel (hysterese)

On og Off modstande kan ændres ved at dobbeltklikke på komponenten, og åbne dens spread sheet.

Bias	Modstandsnetværk V V I W
	Nul fra GND, vælg 0, fra /Source ! Vigtigt !!!!
Op og afladning af kondensatorer	RC-led IC1, IC2. (Initial Condition)
Cursorer.	Cursorer-visninger kan desværre ikke komme med i word !!! Mark Datapoint.
Sw_topen, SW_tclose	Opladning / afladning af kondensator
Sinusgenerator, RC-led	Prøv med forskellige frekvenser
Transistorkredsløb	
Operationsforstærker.	Vsin, OPAMP
VPWL Stigende spænding	Opamp som Komparator
Frekvenssweep. VAC, 1 Volt,	RC-led, CR-led, OPAMP.

<u>Digital sim.</u>

Oversigt over "Nogle interessante / relevante ORCAD komponenter " + 74xx + biblioteker

Komponent	Navn / Bibliotek	Symbol	Kommentarer
Modstand	R / Analog	R1 □	
Kondensator	C / Analog	C1 □ □ 1n	
Spole	L / Analog	L1 100H	Husk seriemodstand (kobbermodstand)
Sluttekontakt	SW_Tclose / Eval	TCLOSE = 0 1 - 2	Slutter efter en tid
Åbnekontakt	SW_Topen / Eval	TOPEN = 0 $\begin{bmatrix} 1 & -2 \\ 0 & -2 \end{bmatrix}$	Bryder efter en tid
OPAMP	OPAM / Analog		En ideel opamp.
OPAMP	LM324 / Analog		En "rigtig" opamp.
Potentiometer	Pot / BREAKOUT	R2 1	Armen er default sat i mid- ten. Kan ændres i regnear- kets søjle SET, fx til 0.2
Potentiometer	R_VAR / Analog		Værdien er default sat til 0.5 Værdien kan ændres i reg- nearkets søjle SET.
Diode	D1N4148 / Eval	D1 □[}-□ D1N4148	
Zenerdiode	D1N750 / Eval	D1 D-D-D- D1N750	
Transistor NPN	Q2N2222 / Eval	Q1 Q2N2222	
Transistor PNP	Q2n3906 / EVAL	Q2 Q2N3906	Transistoren spejles hori- sontal

Spændingsstyret kon- takt	S / EVAL	S VOFF = 0.0V VON = 1.0V	På venstre side sættes øverst en spænding, og nederst sættes fx nul.
Transformer	XFRM_LINEAR / Analog		
Batteri	VDC / Source	0Vdc <u></u> 	
Symbolsk luft-ledning 2 med ens navne er for- bundne.	VCC / Capsym	vçc	Findes i 🥬 / Capsym
Nul	0		Findes i 🖳 / Source

Udvalgte 74xxx kredse til simulering med ORCAD PSPICE

I biblioteket PSPICE / EVAL findes blandt andet følgende 74xx gates, der er interessante i forbindelse med simulering

7400	2-Nand	7410	3-Nand	42A	BCD til Decimal
01	2-Nand-OC	11	3-And	48	BCD til 7-segment
02	2-Nor	14	Inv m/ Hysterese	49	BCD til 7-segment
03	2-Nor OC	20	4-Nand	73	JK-FF
04	Inv	27	3-Nor	74	D-FF
05	Inv OC	28	2-Nor	76	JK-FF med Preset & Clear
08	2-And	32	2-Or	77	Latch 2 bit
09	2-And OC			85	4 bit komparator
				86	2-Exor
				95A	4 bit skiftereg. PI, PO, SI
				96	5 bit skiftereg, med Preset
					_
100	4 bit latch	160	Syncron 4 bit Decade tæller, Preset	248	BCD til 7-segment
107	JK FF med Clear	161	Syncron 4 bit Binær tæller, Preset	273	8 D-FF
132	2-Nand m. Hysterese	164	8 bit skiftereg, PO	279	S-R FF, Aktiv lav
153	4 line til 1 multiplexer	174	HEX D-FF	393	4 bit tæller
154	4 line til 16 mux	184	BCD til Binær	490	Decade Counter
155	DEMUX	185	4 bit binær til BCD		

Endring af default 5 Volt spænding på CMOS Gates

Placer en komponent, en CD4000_PWR fra biblioteket / Special

Ændre dens Voltage til 15 Volt Ændre dens reference til 0

	CD4000 Interface Pwr Supply						
	VOLTAGE = 5V						
	REFERENCE = X1						
CD4000_PWR							
	CD4000 Interface Dur Supply						
	CD4000 Interface Pwr Supply						
	VOLTAGE = 12V						
	REFERENCE = 0						
	CD4000_PWR						
С	04000_PWR						

Placer en CMOS Gate

Dob. Klik på Gaten	✓ Help			
Scroll hen til	:B Footprint	Power Pins Visible	Primitive	
	0/14/W.300/L.800	V	DEFAULT	×
Sæt nak i Power pins visible		·		

Dobb. Klik på CD4000 Interface PWR supply. Gør også dennes powerpins visible.

	CD4000 Interface Pwr Supply					
	VOLTAGE = 12V					
_	REFERENCE = 0					
	<vdd_node></vdd_node>					
	<vss_node></vss_node>					
С	CD4000_PWR					

CD4000 Interface Pwr SupplyVOL TAGE = 15VREFERENCE = 0 $<math><VDD_Node>$ CD4000_PWR = 0CD4000_PWR = 0CD4001 B V CD4001 B CD4000 B CD4001 B CD4001 B CD4000 B CD4

Forbind nu. Alle gates skal have wires.

Konvergensfejl:

Nogle gange, når man simulerer, får man konvergensfejl.

Nordcad der forhandler ORCAD har udsendt følgende hint:

Under opsætning af simuleringsprofil vælges faneblad OPTIONS.

Her kan man fint sætte VNTOL og ABSTOL op til 1m, og for at simulatoren ikke giver op for hurtigt sættes ITL4 til 100

Simulation Settings - 1										
General Analysis Include	Files Libraries Stimulus Options D	ata Collec	tion Pr	obe Window						
Category				(.OPTION)						
Analog Simulation	Relative accuracy of V's and I's:	0.001		(RELTOL)						
Gate-level Simulation	Best accuracy of voltages:	1.0m	volts	(VNTOL)						
Uutput nie	Best accuracy of currents:	1.0m	amps	(ABSTOL)						
	Best accuracy of charges:	0.01p	coulomb	s (CHGTOL)						
	Minimum conductance for any branch:	1.0E-12	1/ohm	(GMIN)						
DC and bias "blind" iteration		150		(ITL1)						
	DC and bias "best guess" iteration limit:	20		(ITL2)						
	Transient time point iteration limit:	100		(ITL4)						
	Default nominal temperature:	27.0	°C	(TNOM)						
	Use GMIN stepping to improve conv	ergence.		(STEPGMIN)						
	Use preordering to reduce matrix fill-in	n.		(PREORDER)						

Pspice baggrundskulør:

Pspice trace color http://support.ema-eda.com/documents/PSpice_16_5.pdf

<mark>Skal nok væk</mark>

Orcad 16.5 addere sim-bare biblioteker:

Browse til C:/Orcad/Orcad_16.5_Lite/Pspice/Library

×

